

Simulation of Phase Transition and its Visualization

2024/12/15

Basic Concept

Method

CONTANTS

Result discussion

Conclusion

Part I Basic Concept of Phase transition

Phase Transition

• **Classical Phase Transition**: caused by thermal parameters e.g. water-ice-vapor, superconductor-resistor, <u>Ising Model</u>

• Quantum Phase Transition: adulteration, magnetization e.g. Bose-Hubbard Model

Basic Concept

Method

2D Ising Model

- Paramagnetic-ferromagnetic, T_c : Curie Temperature
- Lenz Ising : 1D
- Mean field theory: $T_c = 2$
- Ensemble Theory, Onsager, Second-order transition, $\frac{d^2E}{dT^2}$ discontinued
- Landau: Order parameter symmetry breaking theory

Part II Method

- 1. Give a random spin configuration $\{s_i\} \equiv s_1, s_2 \cdots, s_N$
- 2. Select a point randomly, calculate the energy change if flip it.

$$\Delta E = (-J(-s_m)\sum_n s_n) - (-Js_m\sum_n s_n) = 2Js_m\sum_n s_n$$

- 3. If $\Delta E \leq 0$, flip; if $\Delta E > 0$, flip it by a ratio $A = e^{-\Delta E/kT} \in [0, 1]$
- 4. Repeat 2-3, (Markov chain length)
- 5. Change the Temperature and repeat 2-4.

Important sample

Markov process

- 1. Ergodicity 🗹
- 2. Detailed Balance:

$$p_{\mu} P(\mu \to \nu) = p_{\nu} P(\nu \to \mu)$$
$$p_{\mu} = e^{-\beta E_{\mu}}, \qquad p_{\nu} = e^{-\beta E_{\nu}}$$
$$P(\mu \to \nu) \equiv g(\mu \to \nu) \cdot A(\mu \to \nu)$$
$$g_{\mu \to \nu} = \frac{1}{N}$$

$$\frac{P(\mu \to \nu)}{P(\nu \to \mu)} = \frac{g(\mu \to \nu)A(\mu \to \nu)}{g(\nu \to \mu)A(\nu \to \mu)} = \frac{A(\mu \to \nu)}{A(\nu \to \mu)} = e^{-\beta (E_{\nu} - E_{\mu})}$$

 $A(\mu \rightarrow \nu) = \begin{cases} e^{-\beta (E_{\nu} - E_{\mu})}, & \text{if } E_{\nu} - E_{\mu} > 0, \\ 1, & \text{others.} \end{cases}$

Metropolis's Shortcoming

- 1. Single-Filp-Dynamics: convergence speed is too slow.
- 2. Easy to fall into metastable state.

Wolff Algorithm

Wolff's process

- 1. Give a random spin configuration $\{s_i\} \equiv s_1, s_2 \cdots, s_N$
- 2. Select a seed point randomly,
- 3. Grow the cluster: consider its neighbors, add them to the cluster with $P_{add} = 1 e^{2J/kT}$ (use random numbers), until no new members.
- 4. Flip the cluster.
- 5. Repeat step 2-4. (called Wolff length)
- 6. Change *T*, repeat 2-5.

Basic Concept Method

Conclusion

c: number of added ,

m: number of not added at μ ,

n: number of not added at ν .

$$g(\mu \to \nu) = (P_{add})^{c}(1 - P_{add})^{m},$$

$$g(\nu \to \mu) = (P_{add})^{c}(1 - P_{add})^{n}$$

$$e^{-\beta (E_{\nu} - E_{\mu})} = \frac{P(\mu \to \nu)}{P(\nu \to \mu)} = \frac{g(\mu \to \nu)A(\mu \to \nu)}{g(\nu \to \mu)A(\nu \to \mu)} = (1 - P_{add})^{m-n} \frac{A(\mu \to \nu)}{A(\nu \to \mu)}$$

$$\Delta E = E_{\nu} - E_{\mu} = 2J(m-n)$$

$$\Rightarrow \frac{A(\mu \to \nu)}{A(\nu \to \mu)} = e^{\beta 2J(m-n)}(1 - P_{add})^{m-n}$$
Wolff: $P_{add} = 1 - e^{-2\beta J}$

$$\Rightarrow A_{w}(\nu \to \mu) = A_{w}(\mu \to \nu) = 1$$

- Accepted ratio: Wolff > Metropolis $A_m(\mu \rightarrow \nu) = \begin{cases} e^{-\beta (E_\nu E_\mu)}, & \text{if } E_\nu E_\mu > 0, \\ 1, & \text{others.} \end{cases}$
- A sample process will definitely bring a flip: A higher efficiency.

Method

Result & Discussion

Conclusion

 $\Delta E = 2 J s_m \sum s_n$

Conclusion

Periodical Boundary Condition

Part III Result and Discussion

Conclusion

1. Order parameter \bar{s} -- the best result

Basic Concept	Method	Result & Discussion	Conclusion	

Reduce/enlarge the system's size: Metropolis is fast but worsen.

Wolff, L = 100, $l_w = 1000$, t = 690 s

Metorpolis, L = 400, $l_m = 500$ k, t = 159 s

Metorpolis, L = 40, $l_m = 500$ k, t = 44 s

AN UNI

Wolff, L = 40, $l_w = 1000$, t = 109 s

Metropolis

3

3.5

- Analytical

- Enlarge the size,
 - Wolff have a higher precision (sacrifice time)
 - Metropolis could not find all of the states, faster but larger errors.

If approaching to the Thermodynamics limit:
 Wolff ~ Idea Ising Model.

2. Energy & Specific heat capacity 2th phase transition

Wolff $L = 100, l_w = 2000, t = 190 \text{ s}$

Metropolis $L = 100, l_m = 500$ k, t = 108s

T = 1, L = 40,100,400, t = 44 s

T = 3, L = 40, 100, 400, t = 46 s

- Convergence speed at low/high T
 - Metropolis is slower, need more sampling steps.
 In larger size it has a probability of unconverging.

Basic Concept	Method	Result & Discussion	Conclusion		
				ANAW 1923 SS	
4 Near T					

		表 1 $T_c = 2.26$ 下两种算法的误差对比							
		1	2	3	4	5	平均值	标准差	相对误差
Analytical	Metropolis	0.7843	0.7469	0.7412	0.7776	0.7719	0.7644	0.0192	0.31%
$\bar{s} = 0.6134$	Wolff	0.6120	0.6207	0.6161	0.6159	0.6119	0.6153	0.0036	24.6%

Wolff's result is more stable and more precise

• Metropolis's single-flip strategy is hard to simulate all states of the system.

Part IV Conclusion

Metropolis, low efficiency, needs more samples (longer markov chains) ,

imprecise, can not improved by only increase the size.

just use as an approximation.

In certain size it is acceptable.

• Wolff is faster in high temperature. Near critical point, the result is stable because of finding out more possible state.

Visualization of Ising model's phase transition process

THANKS Author 汤子凡

Simulation of Phase Transition and its Visualization

